

- (Introduction)
- Inclusive cross section & extraction
- Differential cross section & extraction
- Conclusions

Andreas Jung (Purdue U) for the DØ collaboration

American Physical Society – Division of Particle & Fields

 \sqrt{s} =1.96 TeV

- Peak luminosities: 3 − 4 x 10³² cm⁻²s⁻¹
- ~10 fb⁻¹/experiment recorded
- Tevatron shutdown September 2011

General purpose 4π detectors:

- Tracker: Detection and momentum measurement for charged particles
- Calorimeter: Identification and energy measurement of jets and electrons
- Muon system: Identification and momentum measurement of muons

8

Top quark — introduction

- Top is the heaviest fundamental particle discovered so far dilepton
 - $\rightarrow m_t = 173.34 \pm 0.76 \text{ GeV}$

[arxiv:1403.4427]

- \bullet Lifetime: τ ~ $5x10^{\text{-}25}\,s,\,\tau<1/\Lambda_{_{QCD}}<< m_{_{t}}/\Lambda^{_{_{QCD}}}$
 - → Observe bare quark properties
 - Large Yukawa coupling to Higgs boson
 - $\rightarrow \lambda_t \sim 1$ only m_t is natural mass

Special role in electroweak symmetry breaking?

Top Pair Branching Fractions

00000

00000

proton

protor

antiproton

BR, bg

increase

A. Jung

Top quark mass

- Self-consistency test of the SM & stability of the EW vacuum both rely/use pole mass – method dependent
 - Indirect extraction from e.g. cross section, end point, J/psi method
 - → top quark pole mass
 - Direct methods e.g. template, matrix element, likelihood, ideogram
 - → "MC" mass, close to pole mass

Caveat:

- "MC" mass different from the pole mass
- Estimates: O(0.5 GeV) difference to pole mass

PRL 117, 232001 (2016)

- Simultaneous measurement of the ttbar cross section in the I+jets and dilepton channel
 - Combined MVA discriminant, using nuisance parameters
 - Separated by lepton flavor and #jets
- Optimized for smallest uncertainty of extracted top quark pole mass

Phys. Rev. D 94, 092004 (2016)

Inclusive cross section

- Simultaneous measurement of the ttbar cross section in the I+jets and dilepton channel
 - Combined MVA discriminant, using nuisance parameters
 - Separated by lepton flavor and #jets
- Optimized for smallest uncertainty of extracted top quark pole mass

Phys. Rev. D 94, 092004 (2016)

 $\sigma_{tot} = 7.26 \pm 0.12 \text{ (stat.)} \pm 0.54 \text{ (syst.)} \text{ pb } \delta_{S/S} = 7.6\%$

Inclusive cross section

- Repeat experimental measurement procedure for every mass point
 - Systematic uncertainties taken at each mass point, except signal model (scaled from the 172.5 GeV case)
- Characterize slope by 4th order polynomial, use likelihood approach and compare with NNLO+NNLL predictions by top++ (Czakon et al.)
- Maximum of normalized combined likelihood function: $L(m_t) = \int f_{\text{exp}}(\sigma|m_t) \left[f_{\text{scale}}(\sigma|m_t) \otimes f_{\text{PDF}}(\sigma|m_t) \right] d\sigma$

Cross section $\sigma(t\bar{t})$ [pb] $0.70 \pm 0.16 \text{ (stat.)}^{+0.73}_{-0.67} \text{ (syst.)}$
$0.70 \pm 0.16 (\text{stat.})^{+0.73}_{-0.67} (\text{syst.})$
/-0.07 (7 / 7
$0.25 \pm 0.14 (\mathrm{stat.})^{+0.63}_{-0.57} (\mathrm{syst.})$
$7.46 \pm 0.13 (\mathrm{stat.})^{+0.58}_{-0.51} (\mathrm{syst.})$
$7.55 \pm 0.13 (\mathrm{stat.})^{+0.58}_{-0.55} (\mathrm{syst.})$
$7.26 \pm 0.12 (\mathrm{stat.})^{+0.57}_{-0.50} (\mathrm{syst.})$
$7.28 \pm 0.12 (\mathrm{stat.})^{+0.54}_{-0.49} (\mathrm{syst.})$
$0.86 \pm 0.12 (\mathrm{stat.})^{+0.53}_{-0.47} (\mathrm{syst.})$
$0.50 \pm 0.11 (\mathrm{stat.})^{+0.50}_{-0.43} (\mathrm{syst.})$
$6.70 \pm 0.11 \text{ (stat.)}^{+0.60}_{-0.47} \text{ (syst.)}$

Phys. Rev. D 94, 092004 (2016)

 $\delta m_{t}/m_{t} = 1.9\%$

Differential cross sections

- Measured in the I+jets channel, using full D0 data set
- Employ a MVA discriminant to determine sample composition (W+light quark jets vs. W+heavy quark jets vs. ttbar)
- Top quarks reconstructed by kinematic fit (chi2 based), best permutation used
- Uses regularized matrix unfolding to correct for detector effects & acceptance

Phys. Rev. D 90, 092006 (2014)

- Typical precision is about 4-5% in bulk of the data
- Full covariance matrix provided for model builders
- Constrains low mass axi-gluons

Predictions & Uncertainties (NNLO)

- Shows selected set of predictions and scale uncertainties
- Sensitive in ttbar mass threshold region and 1st to 4th bin of pT(t/tbar)

Theoretical uncertainties

- Shows selected set of predictions and D0 data
- Sensitive in ttbar mass threshold region and 1st to 4th bin of pT(t/tbar)

200

300

400

 $p_{\tau}(t/\overline{t})$ [GeV]

500

100

200

100

 $p_{\tau}(t/\overline{t})$ [GeV]

- As an example shown for MSTW2008NNLO
- NNPDF, CT10, HERAPDF1.5 as well
- NLO and NNLO

- Derive a chi2 per mass hypothesis
 - Includes the correlations of statistical uncertainty due to the use of reg. MU

$$\chi^2 = \sum_{i,j} (x_i^{\text{true}} - x_i^{\text{theo}}) \cdot \mathbf{V}_{\mathbf{xx}; \mathbf{i}, \mathbf{j}}^{-1} \cdot (x_j^{\text{true}} - x_j^{\text{theo}})$$

- Minimum of parabola is preferred top mass
 - Delta chi2 = 1 yields uncertainty
- Combination of pT & mTT uses correlations in MC@NLO between those to derive combined chi2
 → top mass via same approach

Order & PDF		$m_t^{ m pole} \; [{ m GeV}]$	
	$m(tar{t})$	$p_T^{ m top}$	$m(tar{t})\oplus p_T^{ ext{top}}$
NLO:			
MSTW2008	169.3 ± 5.7	166.8 ± 2.9	167.4 ± 2.5
CT10	169.4 ± 5.9	167.9 ± 3.0	167.5 ± 2.6
NNPDF2.3	169.0 ± 6.0	166.4 ± 2.9	167.1 ± 2.5
HERAPDF1.5	167.2 ± 6.4	166.0 ± 2.9	165.1 ± 2.7
NNLO:			
MSTW2008	170.7 ± 5.6	168.0 ± 2.5	168.5 ± 2.3
CT10	171.5 ± 5.5	169.4 ± 2.4	169.7 ± 2.2
NNPDF2.3	171.1 ± 5.6	168.5 ± 2.5	169.0 ± 2.3
HERAPDF1.5	172.6 ± 5.6	170.3 ± 2.6	170.2 ± 2.3

TABLE II. Extracted top quark pole mass at NLO and at NNLO pQCD employing the absolute differential cross section as a function of $m(t\bar{t})$ or $p_T^{\rm top}$ and its combination for the MSTW2008, CT10, NNPDF2.3, and HERAPDF1.5 PDF.

- Average top quark mass following this approach:
 - Use only the three global PDFs (MSTW2008, CT10, NNPDF23)
 - Follow PDF4LHC: PDF uncertainty is max difference added in quadrature
 - Using HERA results in a shift of -0.5 at NLO and +0.3 at NNLO, similar uncertainties...shifts due to different xsec prediction when using HERA

	$m_t^{\text{pole}} \pm \delta_{\text{tot.}} \text{ [GeV]}$	$\delta_{\text{exp}} [\text{GeV}]$	$\delta_{ m theo}^{ m scale} \ [{ m GeV}]$	
Order & PDF	$m(tar{t})\oplus p_T^{ ext{top}}$	$m(tar{t}) \oplus p_T^{ ext{top}}$	$m(t\bar{t}) \oplus p_T^{\mathrm{top}}$	
NLO				
MSTW2008	167.4 ± 2.5	± 2.0	± 1.5	
CT10	167.5 ± 2.6	± 2.0	± 1.6	
NNPDF2.3	167.1 ± 2.5	± 2.0	± 1.5	
HERAPDF1.5	165.1 ± 2.7	± 2.3	± 1.5	
NNLO				
MSTW2008	168.5 ± 2.3	± 2.2	± 0.7	
CT10	169.7 ± 2.2	± 2.0	± 0.9	
NNPDF2.3	169.0 ± 2.3	± 2.1	± 0.8	
HERAPDF1.5	170.2 ± 2.3	± 2.2	± 0.7	

TABLE III. Extracted $m_t^{\rm pole}$ at NLO and at NNLO employing the combined χ^2 in $m(t\bar{t})$ and $p_T^{\rm top}$ distributions for the MSTW2008, CT10, NNPDF2.3, and HERAPDF1.5 PDF. The special setting to separately determine the theoretical uncertainty (for details see text) neglects the correlations between the bins of a measured distribution.

- Showing only the combined mass results and breakdown in uncertainty due to experimental sources and theoretical
- NNLO scale uncertainties smaller by a factor of 2 compared to NLO

Results & comparisons

Consistent amongst all the PDFs & able to compete with LHC results

$$m_{t} = 169.1 \pm 2.2 \text{ (exp)} \pm 0.8 \text{ (scale)} \pm 1.2 \text{ (PDF)} \text{ GeV}$$

 $\delta m_1/m_1 = 1.5\%$

- Extractions of the top quark mass from cross sections
 - Inclusive extraction, most precise at Tevatron

$$m_t = 172.8 \pm 1.1 \text{ (theo)} \pm 3.2 \text{ (exp)} \text{ GeV}$$
 $\delta m_t/m_t = 1.9\%$

Differential extraction, additional improvement by 25%

$$m_t = 169.1 \pm 2.2 \text{ (exp)} \pm 0.8 \text{ (scale)} \pm 1.2 \text{ (PDF)} \text{ GeV} \quad \delta m_t / m_t = 1.5\%$$

D0 6473

Ongoing work for combination, needs detailed study of correlations

Thank you!

D0 Top Web pages

